Anatase TiO$_2$-doped activated carbon fibers prepared by ultrasonication and their capacitive deionization characteristics

Da Hee Kang, Hanjoo Jo, Min-Jung Jung, Kyoung Hoon Kim and Young-Seak Lee

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea

Abstract
TiO$_2$-doped activated carbon fibers (ACFs) were successfully prepared as capacitive deionization (CDI) electrode materials by facile ultrasonication-assisted process. ACFs were treated with titanium isopropoxide (TTIP) and isopropyl alcohol solutions of different concentrations and then calcinated by ultrasonication without heat-treatment. The results show that a certain amount of anatase TiO$_2$ was present on the ACF surface. The specific capacitance of the TiO$_2$-doped ACF electrode was remarkably improved (by 93.8% at scan rate of 50 mV s$^{-1}$) over that of the untreated ACF electrode, despite decreases in the specific surface area and total pore volume upon TiO$_2$ doping. From the CDI experiments, the salt adsorption capacity and charge efficiency of the sample with TTIP percent concentration of 15% were found to considerably increase by 71.9 and 57.1%, respectively. These increases are attributed to the improved wettability of the electrode, which increases the number of surface active sites and facilitates salt ion diffusion in the ACF pores. Additionally, the Ti-OH groups of TiO$_2$ act as electrosorption sites, which increases the electrosorption capacity.

Keywords: TiO$_2$, activated carbon fiber, capacitive deionization, ultrasonication

1. Introduction

Capacitive deionization (CDI) is an emerging technology that has the advantages of low energy consumption, relatively inexpensive operation, simple regeneration, and no secondary contamination [1]. CDI is based on the electrosorption of ions through the formation of an electrical double-layer on the surface of a porous material. When the electrode pair are charged with a voltage of approximately 1 V, salt ions are electrostatically removed from the feed water forming the electrical double-layer [2-4].

Carbon materials are considered to be the most promising materials for CDI applications because of their high specific surface area, good conductivity, and chemical and electrochemical stability [5]. In particular, activated carbon fibers (ACFs) have been studied as CDI electrode materials due to their short ion diffusion paths, uniform pore size, and good conductivity [6]. Theoretically, as the specific surface area of a carbon material increases, its capability of accumulating salt ions increases [7]. However, the CDI performance does not necessarily increase proportionally with the specific surface area of the porous carbon but rather is affected by both the specific surface area and the surface properties. Therefore, surface modification of carbon materials is important to improve CDI performance.

Various surface modification methods have been investigated, such as treatment with acid/base solutions and the addition of organic/inorganic materials. Among these methods, the introduction of metal oxides has the advantages of low cost, ecofriendliness, good chemical stability, and high capacitance [8,9]. In this respect, carbon materials modified with TiO$_2$ have been reported as CDI electrode materials [10-13]. TiO$_2$ is hydrophilic due to the presence of hydroxyl groups on its surface. The improved wettability of an electrode by TiO$_2$ increases the number of active sites on the surface and facilitates ion diffusion, which benefits the CDI performance [14-16].
TiO$_2$-doped activated carbon fibers for CDI

TiO$_2$-carbon material composites are mainly prepared by sol-gel methods. In the conventional sol-gel method, high temperature (above 500°C) and a long calcination time (over 2 h) are required to induce crystallization. In addition, this calcination process must be conducted in inert or vacuum conditions [17]. Such processes consume a large amount of energy, and the cost restricts the application of TiO$_2$/carbon materials in CDI. Thus, it is necessary to develop a facile sol-gel method to prepare TiO$_2$/carbon material composites without heat-treatment.

The application of ultrasound in the synthesis of TiO$_2$ has become a useful method in recent years. When solutions are exposed to strong ultrasound irradiation, bubbles are implausibly collapsed by acoustic fields in the solution. High-temperature and high-pressure fields are produced at the centers of the bubbles, which is known as acoustic cavitation [18]. This method rapidly forms high-purity TiO$_2$ nanoparticles with a narrow size distribution [19].

In this study, a facile ultrasonication-assisted process is suggested as a new and energy-efficient process for quickly preparing TiO$_2$-doped ACFs without heat-treatment, and the prepared TiO$_2$-doped ACFs were used as an electrode material for CDI. In addition, the effect of the introduction of TiO$_2$ on the electrochemical properties was investigated.

2. Experimental

2.1. Preparation of TiO$_2$-doped ACFs

Pitch-based ACFs (A-10, Osaka Gas Co., Japan), as the active material, and titanium isopropoxide (TTIP; 97%, Aldrich, USA), as the TiO$_2$ precursor, were used in this study. Isopropyl alcohol (IPA; 99.5%, Samchun Pure Chemical Co., Ltd., Korea) was used as the solvent.

The flow chart of the facile ultrasonication-assisted process is shown in Fig. 1. TTIP and IPA were mixed at various concentrations, in which the total volume of the solutions was 20 mL. Then, 5 g of the ACFs was mixed with each solution and stirred for 1 h at room temperature. The treated ACFs were dried for 12 h at 100°C to remove the solvent. The dried samples were calcined at room temperature for 40 min. When ultrasound wave was injected into water, cavitation bubbles were formed from pre-existing impurities. Positive and negative pressure were exerted by alternating compression and expansion cycles of ultrasonic waves, respectively. The cavitation bubbles accumulate ultrasonic energy while growing over a few cycles by entrapping the vapor before collapsing [20].

The untreated ACF sample is denoted ACF-RAW. The TTIP-treated ACF samples are denoted ACF-T05, ACF-T15, and ACF-T25, depending on the percent concentration of TTIP. The treatment conditions of the prepared samples and the sample notations are listed in Table 1.

![Fig. 1. Preparation of TiO$_2$-doped ACFs via facile ultrasonication-assisted process.](http://carbonlett.org)

Table 1. Manufacturing conditions for the preparation of TiO$_2$-doped ACFs

<table>
<thead>
<tr>
<th>Sample</th>
<th>TTIP (mL)</th>
<th>IPA (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF-RAW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACF-T05</td>
<td>1.0</td>
<td>19.0</td>
</tr>
<tr>
<td>ACF-T15</td>
<td>3.0</td>
<td>17.0</td>
</tr>
<tr>
<td>ACF-T25</td>
<td>5.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

2.2. Characterization of TiO$_2$-doped ACFs

The morphology of the prepared samples was observed using a high-resolution scanning electron microscope (HR-SEM; SU8230, Hitachi, Japan). The crystallinity of the prepared samples was characterized using an X-ray diffractometer (XRD; D8 Discover, Bruker AXS, Germany) equipped with Cu K$_\alpha$ radiation. The thermal characteristics of the samples were estimated via thermogravimetric analysis (TGA) using a thermal analyzer (SDT Q600, Mettler Toledo, Korea) in air at a heating rate of 10°C/min [21]. The textural properties of the samples were analyzed via a conventional volumetric technique at 77 K using an ASAP 2020 (Micromeritics, USA). The specific surface areas and pore size distributions of the samples were calculated by Brunauer-Emmett-Teller and density functional theory (DFT) equations, respectively.

2.3. Fabrication of the electrodes

The ACFs or TiO$_2$-doped ACFs, with carbon black (Super P Li, Timcal Ltd., Switzerland) as a conducting agent and poly(vinylidene fluoride) (PVDF; Aldrich) as a binder (8:1:1 mass ratio), were mixed in N-methyl-2-pyrrolidone (NMP; Aldrich) for 6 h to form a slurry. A doctor blade was used to coat the slurry on a graphite sheet using a wet thickness of 200 μm;
slurry was then dried at 100°C for 12 h to the remove solvent. The CDI and cyclic voltammetry (CV) electrodes had areas of 90×90 mm² and 30×30 mm², respectively.

2.4. Characterization of the electrodes

The wettability of the prepared samples was evaluated by a contact angle analyzer (Phoenix 300, Surface Electro Optics Co., Ltd., Korea) [22]. To examine the electrochemical properties of the prepared electrodes, CV was performed using a computer-controlled potentiostat/galvanostat (Ivium Technologies, the Netherlands) using a three-electrode assembly in 1 M NaCl. The fabricated electrodes were used as the working electrode. A platinum plate and Ag/AgCl were used as the counter electrode and the reference electrode, respectively. CV measurement was performed over a potential range of 0–1 V at scan rates of 5 and 50 mV s⁻¹ [7]. In addition, electrochemical impedance spectroscopy measurements were taken at 0 V with a potential amplitude of 5 mV in the frequency range of 150 kHz to 0.01 Hz in 1M NaCl solution.

2.5. CDI experiments

The desalination performance of the fabricated electrodes was investigated in a continuous recycling system that included a peristaltic pump (LEPP 150F, Lab SciTech, USA), a conductivity meter (CCT-3300 series, Hebei Create Instrumentation Technologies Co., Ltd., China), and a computer-controlled potentiostat/galvanostat. An NaCl solution with an initial concentration of 500 ppm was pumped into the CDI cell, and the effluent was returned to the unit cell at a flow rate of 20 mL min⁻¹. Upon applying 1.2 V to the CDI cell, a conductivity meter was used to measure the variation in the NaCl conductivity according to its relationship with the concentration at the outlet of the unit cell.

3. Results and Discussion

3.1. Characterization of TiO₂-doped ACFs

Fig. 2 shows HR-SEM images of the surface morphologies of the untreated ACFs and TiO₂-doped ACFs. In Fig. 2 a, the ACFs were shown to have fibrous forms with diameters of 14 μm. In Fig. 2b-d, TiO₂ particles are shown to be randomly distributed on the ACF surface. In addition, the TiO₂ doping amount increased with increases in the TTIP concentration. The TiO₂ particles have nanoflake form with 0.3–0.4 μm. With the TiO₂ doping amount increased, the surface of the TiO₂/ACF samples became rough and some agglomeration was observed.

Fig. 3 exhibits the TGA results of the prepared samples, which were used to confirm TiO₂ doping amount on the ACF surface. Because carbon in the ACFs is completely decomposed in air flow, the weight of TiO₂ can be determined from the remaining weight of the sample [23]. The weight loss at 25–100°C is attributed to the dehydration of physically adsorbed water. The TiO₂-doped ACFs showed a larger drop in weight than did the untreated ACFs, which can be ascribed to interactions between the Ti-O groups in TiO₂ and the OH groups in water, as these interactions increased the content of water in the samples [24].

In addition, the sharp decline at approximately 500°C is due to decomposition of the ACFs [25]. The remaining weights of ACF-RAW, ACF-T05, ACF-T15, and ACF-T25 after carbon decomposition were 0.38, 3.49, 11.20, and 18.11%. Accordingly, the TiO₂ doping amounts of ACF-T05, ACF-T15, and ACF-T25 were determined to be 3.11, 10.82, and 17.73%, respectively. Thus, the amount of TiO₂ doped on the ACF surface can be simply controlled by adjusting the TTIP concentration.

3.2. CDI desalination performance

Fig. 4 presents XRD patterns of the untreated ACFs and TiO₂-doped ACFs. In the ACF-RAW pattern, broad diffraction peaks were observed at 26 and 44°; these corresponded to the (100) and (002) planes of graphite (PDF card 41-1487, JCPDS) [26]. The diffraction peak at 26° becomes gradually sharper with increasing TTIP concentration; this is attributed to overlap of the peak corresponding to the (002) plane of amorphous graphite with that corresponding to the (101) plane of anatase TiO₂ [27]. Accordingly, this result implied that the TiO₂ doping amount in the prepared samples increased with increasing TTIP concentration. Additionally, in the ACF-T25 pattern, the diffraction peaks correspond to the (101), (004), (200), (105), (211), and (204) planes of the anatase TiO₂ phase (PDF card 21-1272, JCPDS).
TiO₂-doped activated carbon fibers for CDI

The samples decreased with increased TiO₂ doping. The micropore volume also decreased after TiO₂ doping due to TiO₂ particles blocking the ACF pores, which is consistent with the aforementioned results. The mesopore volumes of ACF-T15 and ACF-T25 were larger than that of ACF-T05 due to the formation of voids resulting from aggregation of the TiO₂ particles [31]. Therefore, small TiO₂ particles (approximately 5 μm in diameter) were introduced on the ACF surface via the suggested process. This result was obtained because H₂O was not added during the gelation process, unlike in the conventional sol-gel process. Therefore, this facile ultrasonication-assisted process is a superior process to introduce TiO₂ particles without a major decrease in the specific surface area.

Table 2. Textural properties of untreated and TiO₂-doped ACFs

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specific surface area (m² g⁻¹)</th>
<th>Total pore volume (cm³ g⁻¹)</th>
<th>Micropore volume (cm³ g⁻¹)</th>
<th>Mesopore volume (cm³ g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF-RAW</td>
<td>1221.2</td>
<td>0.52</td>
<td>0.49</td>
<td>0.03</td>
</tr>
<tr>
<td>ACF-T05</td>
<td>982.8</td>
<td>0.43</td>
<td>0.42</td>
<td>0.01</td>
</tr>
<tr>
<td>ACF-T15</td>
<td>886.1</td>
<td>0.43</td>
<td>0.38</td>
<td>0.05</td>
</tr>
<tr>
<td>ACF-T25</td>
<td>781.3</td>
<td>0.39</td>
<td>0.34</td>
<td>0.05</td>
</tr>
</tbody>
</table>

[28]. Therefore, TiO₂ precursor was successfully transformed into anatase TiO₂ particles by only the ultrasonication calcining process at room temperature without heat-treatment.

3.2. Textural properties of TiO₂-doped ACFs

Nitrogen adsorption analysis at 77 K was performed to investigate the changes in the textural properties of the prepared samples. As shown in Fig. 5a, ACF-RAW and ACF-T05 have type 1 profiles according to the IUPAC classification. The adsorption steeply increases below a P/P₀ ratio of 0.1 and does not significantly increase beyond that, indicating that the samples were microporous [29]. ACF-T15 and ACF-T25 exhibited hybrid type 1 and type 4 profiles. The amount of adsorption slightly increased below a P/P₀ ratio of 0.1, and gradually increased at greater ratios. Additionally, weak hysteresis loops were observed in the isotherms. These results indicate that ACF-T15 and ACF-T25 are microporous materials with small amounts of mesopores [30]. To examine the change in the pore structure after TiO₂ doping, DFT calculations of the pore size distribution were performed and are shown in Fig. 5b. The fraction of micropores significantly decreased with increased TiO₂ doping because the TiO₂ particles blocked the ACF pores, whereas the fraction of mesopores increased with increased TiO₂ doping. It is thought that the TiO₂ particles doped on the ACF surface formed voids while being aggregated [31]. Table 2 contains detailed information of the textural properties of the prepared samples. The specific surface area and total pore volume of the samples decreased with increased TiO₂ doping. The micropore volume also decreased after TiO₂ doping due to TiO₂ particles blocking the ACF pores, which is consistent with the aforementioned results. The mesopore volumes of ACF-T15 and ACF-T25 were larger than that of ACF-T05 due to the formation of voids resulting from aggregation of the TiO₂ particles [31].

Therefore, small TiO₂ particles (approximately 5 μm in diameter) were introduced on the ACF surface via the suggested process. This result was obtained because H₂O was not added during the gelation process, unlike in the conventional sol-gel process. Therefore, this facile ultrasonication-assisted process is a superior process to introduce TiO₂ particles without a major decrease in the specific surface area.

Fig. 4. XRD peaks of untreated and TiO₂-doped ACFs.

Fig. 5. (a) Nitrogen adsorption isotherms at 77 K and (b) DFT-calculated pore size distribution of untreated and TiO₂-doped ACFs.
electrodes was calculated using the following equation:

$$C = \frac{1}{m} \int \frac{i}{\Delta V} \, dt$$ \hspace{1cm} (1)$$

where C (F g$^{-1}$) is the specific capacitance of the cell, m (g) is the mass of the active material in the working electrode, i (A) is the discharge current for time dt, and ΔV (V) is the potential window of the charge-discharge cycle [29].

The specific capacitances of the samples are listed in Table 3. Although the specific surface area and pore volume decreased upon TiO$_2$ doping, the specific capacitance values of the ACF-T15 electrode reached 182 and 62 F g$^{-1}$ at scan rates of 5 and 50 mV s$^{-1}$, respectively, which are 9.6 and 93.8% higher than that value of the ACF-RAW electrode. The TiO$_2$ particles doped on the ACF surface improved the wettability of the electrodes and reduced the ion-diffusion resistance. Additionally, the electro-sorption performance was improved by TiO$_2$ doping on the ACF surface because the polar TiO$_2$ groups act as electrosorption sites with improved adsorption strength [37]. However, the specific capacitance of ACF-T25 dramatically decreased compared with that of ACF-RAW. Excessive TiO$_2$ doping has a negative influence on the specific capacitance because aggregated TiO$_2$ particles block the pores of ACFs that are ion adsorption sites. If the specific surface area is reduced to more than a certain level, the electrochemical properties of prepared electrodes

Fig. 7 provides CV curves of the prepared samples at scan rates of 5 and 50 mV s$^{-1}$ in 1 M NaCl solution. At a scan rate of 5 mV s$^{-1}$ (Fig. 7a), all of the cyclic voltammograms exhibited approximately rectangular shapes; this indicates the typical i-E response of carbon materials [33]. At a scan rate of 50 mV s$^{-1}$ (Fig. 7b), the samples exhibited leaf-like shapes, which were mainly due to the ohmic resistance caused by electrolyte motion in the pores of the carbon materials upon formation of an electric double-layer [35]. In addition, no redox peaks were observed in the CV curve of the ACF-RAW electrode; this indicates that the current resulted from electrostatic interactions [36]. Moreover, no redox peaks were observed in the CV curves of the TiO$_2$-doped ACF electrodes, indicating that no pseudo-faradaic reaction occurred with TiO$_2$. The specific capacitance (C) of the electrodes was calculated using the following equation:

$$C = \frac{1}{m} \int \frac{i}{\Delta V} \, dt$$ \hspace{1cm} (1)$$

3.3. Electrode surface wettability of the prepared electrodes

Though carbon materials have high surface areas, an electrode that cannot contact an aqueous solution is useless for the adsorption of ions [32]. Therefore, it is important to increase the wetted surface of the electrode for improved CDI performance. Accordingly, water drop contact angles of the fabricated electrodes were measured at room temperature to estimate the wettability of the prepared electrode materials [33,34]. Fig. 6 shows images of the contact angles of the untreated ACF and TiO$_2$-doped ACF electrodes. The contact angles of ACF-RAW, ACF-T05, ACF-T15, and ACF-T25 were approximately 101, 80, 74, and 65°, respectively. The wettability of the electrodes increased as the TiO$_2$ doping amount increased. These results means that the contact angles decreased with decreasing roughness of the electrodes, even though SEM images for the roughness of electrodes are not provided in this manuscript. Therefore, it was concluded that the surface of the electrodes follows the Cassie-Baxter model [34]. On a Cassie-Baxter surface, liquid is supported by air pockets between grooves if the surface and the contact angle increase with increasing roughness. The high wettability of the prepared electrodes is due to the hydrophilicity of TiO$_2$, while the untreated ACF electrode had a low wettability due to the hydrophobicity of the carbon surface [14]. The enhanced wettability of the electrodes increases the active sites in the pores as well as the ion transport speed inside the pores [15].
specific capacitance is more affected by the specific surface area than by the wettability of electrodes [33].

Fig. 8 presents results of AC impedance measurement of the prepared electrodes. The Nyquist impedance plots of the prepared electrodes correspond to the equivalent circuit for simulation of the impedance spectra shown in Fig. 8, where \(R_s \) is the solution resistance, \(C_{dl} \) is the double layer capacitance, \(R_{ct} \) is the charge transfer resistance, and \(Z_w \) is the Warburg diffusion element. The diameter of the semicircle corresponds to \(R_{ct} \). The values of \(R_{ct} \) for ACF-RAW, ACF-T05, ACF-T15, and ACF-T25 were calculated and found to be 2.97, 2.12, 1.83, and 1.58 \(\Omega \), respectively. The value of \(R_{ct} \) also decreased with TiO\(_2\) doping amount. This implies that, as aforementioned, the enhanced wettability facilitated rapid ion transport within ACF pores, which decreased the \(R_{ct} \) [15]. At lower frequency, the straight line of the TiO\(_2\)/ACF electrodes, which represents the diffusion resistance, has a larger slope than that of the ACF-RAW electrode. This suggests that ion diffusion and migration on the surface of electrode are faster, representing an improved performance of the CDI cell [8]. In conclusion, the introduction of TiO\(_2\) facilitates ion diffusion and migration on the surface of the electrode.

3.5. Desalination performance of prepared electrodes

The CDI performance of the prepared electrodes was investigated to elucidate the effect of TiO\(_2\) doping. Fig. 9 shows conductivity changes of NaCl solutions during the charging step in the CDI unit. The conductivity at the initial charging step rapidly decreased, indicating quick adsorption of the salt ions. As time passed, the conductivity slowly decreased and then remained constant once adsorption equilibrium was reached. The minimum conductivity of ACF-T15 was the lowest among the samples. Thus, the CDI performance of ACF-T15 is expected to be improved by TiO\(_2\) doping.

To determine the CDI performance of the prepared electrodes, the salt adsorption capacity and charge efficiency were calculated using Eqs. 2 and 3, respectively. The salt adsorption capacity \((Q)\) was obtained by the change in salt concentration during the charging process:

\[
Q = \frac{(\rho_0 - \rho_f)V}{m}
\]

where \(\rho_0 \) (mg L\(^{-1}\)) is the initial NaCl concentration, \(\rho_f \) is the final NaCl concentration during the adsorption process, \(V \) (L) is the total volume of the NaCl solution, and \(m \) (g) is the mass of the electrode. The charge efficiency \((\Lambda)\) was calculated according to Eq. 3:

\[
\Lambda = \frac{Q \times F}{\Sigma} = \frac{Q \times F}{\int dt}
\]

where \(F \) is the Faraday constant, \(Q \) (mol g\(^{-1}\)) is the adsorption capacity, and \(\Sigma \) (C g\(^{-1}\)) is the electrode charge obtained by integrating the current over time [38]. Fig. 10 shows the salt adsorption capacitance and charge efficiency of the prepared electrodes. The ACF-T15 electrode has the greatest salt adsorption capacity of 10.6 mg g\(^{-1}\), which is 71.9% higher than that of the ACF-RAW electrode. Additionally, the ACF-T15 electrode has the highest charge efficiency of 0.66, which is attributed to the TiO\(_2\) particles on the ACF surface increasing the wettability of the electrodes and thus increasing the active sites of the pores [15]. As seen from the CV results, an increased electrosorption capacity was observed for the TiO\(_2\)-doped ACF electrodes, which have highly hydrophilic surfaces due to the Ti-OH groups of TiO\(_2\) [17]. Therefore, the introduction of TiO\(_2\) on the ACF surface is effective for enhancing the CDI performance in terms of the salt adsorption capacity and charge efficiency. Therefore, the TiO\(_2\)-doped ACFs prepared by facile ultrasonication-assisted process
have outstanding CDI performance, comparable to that of TiO$_2$/carbon materials prepared by heat-treatment [13,28,38]. Thus, TiO$_2$-doped ACFs can be applied as energy efficient electrode materials in the CDI industry.

4. Conclusions

In this study, anatase TiO$_2$-doped ACFs, as CDI electrode materials, were prepared by a facile ultrasonication-assisted process. The experimental results indicated that anatase TiO$_2$ particles were successfully and quickly doped on the ACF surface using only an ultrasonication calcining process without heat-treatment. The electrochemical results show that, although the specific surface area and pore volume decreased upon TiO$_2$ doping, the specific capacitance of the ACF-T15 electrode was much higher than that of the ACF-RAW electrode. In the CDI experiments, the ACF-T15 electrode showed a 71.9% improvement in the salt adsorption capacity over that of the ACF-RAW electrode. This improvement was attributed to the enhanced wettability, which increases the active sites of the pores and facilitates ion transport in the ACF pores. In addition, the Ti-OH groups of the TiO$_2$-doped ACF electrodes acted as electrosorption sites to increase the electrosorption capacity. Therefore, TiO$_2$-doped ACF electrodes prepared by the reported facile ultrasonication-assisted process are promising candidates for the practical, industrial application of CDI.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgements

This work was supported by the Materials and Components Technology Development Program of MOTIE/KEIT (G01201704010267, development of activated carbon fiber materials with very low cost and high functional property for removing sick house syndrome gas).

References

[15] Szubzdza B, Szmaja A, Halama A. Influence of structure and wet-
tabiliy of supercapacitor electrodes carbon materials on their
 electrochemical properties in water and organic solutions. Electro-
a.2012.08.060.
[16] Barai HR, Banerjee AN, Bai F, Joo SW. Surface modification of
titania nanotube arrays with crystalline manganese-oxide nano-
structures and fabrication of hybrid electrochemical electrode
[17] Liu PI, Chung LC, Shao H, Liang TM, Horng YJ, Ma CCM, Chang
MC. Microwave-assisted ionothermal synthesis of nanostructured
anatase titanium dioxide/activated carbon composite as electrode
material for capacitive deionization. Electrochim Acta, 96, 173
synthesis and microstructure investigation of rod-like nanocrystalline
S0167-577x(03)00376-8.
[19] Ghows N, Entezari MH. Ultrasound with low intensity assisted
the synthesis of nanocrystalline TiO$_2$ without calcination. Ul-
trason Sochnem, 17, 878 (2010). https://doi.org/10.1016/j.ultson-
ch.2010.03.010.
[20] Teh CY, Wu TY, Juan JC. An application of ultrasound technol-
y in synthesis of titania-based photocatalyst for degrading pol-
cej.2017.01.001.
with high adsorption and photocatalytic activity under UV irradia-
jallcom.2014.09.068.
[22] Lee J, Lee B. A simple method to determine the surface energy
[23] Ryoo MW, Kim JH, Seo G. Role of titania incorporated on acti-
vated carbon cloth for capacitive deionization of NaCl solution.
s0021-9797(03)00375-8.
[24] Li M, Lu B, Ke QF, Guo YJ, Guo YP. Synergetic effect be-
tween adsorption and photodegradation on nanostructured TiO$_2$/
activated carbon fiber felt porous composites for toluene re-
jhazmat.2017.03.019.
carbon fibers accompanying electron beam irradiation and their
org/10.5714/cl.2015.16.2.121.
[26] Kim JD, Roh JS, Kim MS. Effect of carbonization temperature
on crystalline structure and properties of isotropic pitch-based
electrode based on facile deposition of carbon/graphene–TiO$_2$
on the coin cell anode for a lithium–ion battery. Surf Coat Technol,
table Au-TiO$_2$/nanocube ZnFe$_2$O$_4$ composite for chlortetracycline
removal in wastewater under visible light. J Ind Eng Chem, 47, 303
[29] Jung MJ, Park MS, Lee YS. Effects of e-beam irradiation on the
chemical, physical, and electrochemical properties of activated
carbons for electric double-layer capacitors. J Nanomater, 2015,
ties of activated carbon nanofibers on the performance of electric
[31] Bagheri S, Mohd Hir ZA, Yousefi AT, Abdul Hamid SB. Progress
on mesoporous titanium dioxide: synthesis, modification and ap-
https://doi.org/10.1016/j.micromeso.2015.05.028.
[32] Park BH, Choi JH. Improvement in the capacitance of a carbon
electrode prepared using water-soluble polymer binder for a capac-
[33] Yasin AS, Mohamed HO, Mohamed IMA, Mousa HM, Barakat
NAM. Enhanced desalination performance of capacitive deion-
ization using zirconium oxide nanoparticles-doped graphene oxide
https://doi.org/10.1016/j.seppur.2016.07.014.
[34] Jeong E, Bae TS, Yun SM, Woo SW, Lee YS. Surface character-
istics of low-density polyethylene films modified by oxyfluoro-
anisation-assisted graft polymerization. Colloids Surf A Physicochem
2010.10.008.
[35] Lee D, Jung JY, Jung MJ, Lee YS. Hierarchical porous car-
bon fibers prepared using a SiO$_2$ template for high-performance
cej.2014.10.070.
[36] Jo H, Kim KH, Jung MJ, Park JH, Lee YS. Fluorination effect of
activated carbons on performance of asymmetric capacitive deion-
apusc.2017.02.234.
[37] Chen ZL, Sun XW, Guo HF, Song CY. Modified activated carbon
electrodes for electrosorption of NaCl from aqueous solution. Adv
scientific.net/AMR.113-116.2134.
[38] El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Bara-
kat NAM. TiO$_2$ nanorod-intercalated reduced graphene oxide as
a high performance electrode material for membrane capacitive de-
desal.2015.01.033.